Des données basées sur le temps façon MongoDB

Bonjour tout le monde,

Cette semaine, c'est Thomas Fabre qui nous propose un article sur le sujet suivant : Des données basées sur le temps façon MongoDB

Dans cette article vous allez découvrir comment une base de données comme Mongo propose d'organiser des données type timeseries. Si la notion de timeseries ne vous est pas familière, dîtes vous que ce sont des données dont la date d'écriture en base revêt une importance primordiale. Les données de type timeseries sont typiquement des métriques envoyées par des sondes pour mesurer l'évolution d'une valeur en fonction du temps. Par exemple l'évolution de la température, du nombre de "click" d'un utilisateur donné etc. Ce qui caractérise ces données, c'est que souvent elles partagent toutes un certain nombre de valeurs dîtes de "métadonnées", par exemple l'identifiant de la sonde, l'utilisateur qui initie l'action etc. Il faut voir également que ces données doivent être présentes en très grand nombre pour pouvoir effectuer des analyses pertinentes dessus. Afin d'optimiser le stockage de ces données, il existe des bases de données qui se sont spécialisées comme InfluxDB. MongoDB dans ces dernières versions propose une façon efficace d'organiser et de stocker ces données. Vous découvrirez entre autre l'approche de mongo dans cet article, comment exploiter ces données, gérer leur cycle de vie etc. Cet article très complet m'a été d'une grande aide pour bien comprendre comment fonctionnait les timeseries mongo.

Le lien : https://www.peerislands.io/timeseries/

Langue : Anglais

Bonne lecture !

Votre équipe TakiVeille

Source image de couverture: https://ak.picdn.net/shutterstock/videos/1027123451/thumb/1.jpg

TakiVeille

TakiVeille